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The ASAC Air Carrier Investment Model

(Second Generation)

SUMMARY

To meet its objective of assisting the U.S. aviation industry with the technological

challenges of the future, NASA must identify research areas that have the greatest

potential for improving the operation of the air transportation system. Therefore,

NASA seeks to develop the ability to evaluate the potential impact of various ad-

vanced technologies. By thoroughly understanding the economic impact of ad-

vanced aviation technologies and by evaluating how these new technologies

would be used within the integrated aviation system, NASA aims to balance its

aeronautical research program and help speed the introduction of high-leverage

technologies. To meet these objectives, NASA is building an Aviation System

Analysis Capability (ASAC).

NASA envisions the ASAC primarily as a process for understanding and evaluat-

ing the impact of advanced aviation technologies on the U.S. economy. ASAC

consists of a diverse collection of models, data bases, analysts, and other indi-

viduals from the public and private sectors brought together to work on issues of

common interest to organizations within the aviation community. ASAC also will

be a resource available to the aviation community to perform analyses; provide

information; and assist scientists, engineers, analysts, and program managers in

their daily work.

The ASAC differs from previous NASA modeling efforts in that the economic

behavior of buyers and sellers in the air transportation and aviation industries is

central to its conception. To link the economics of flight with the technology of

flight, ASAC requires a parametrically based model with extensions that link air-

line operations and investments in aircraft with aircraft characteristics. This

model also must provide a mechanism for incorporating air travel demand and

profitability factors into the airlines' investment decisions. Finally, the model

must be flexible and capable of being incorporated into a wide-ranging suite of
economic and technical models that are envisioned for ASAC.

We describe a second-generation Air Carrier Investment Model that meets these

requirements. The enhanced model incorporates econometric results from the



supplyanddemand curves faced by U.S.-scheduled passenger air carriers. It uses

detailed information about their fleets in 1995 to make predictions about future

aircraft purchases. It enables analysts with the ability to project revenue passen-

ger-miles flown, airline industry employment, airline operating profit margins,

numbers and types of aircraft in the fleet, and changes in aircraft manufacturing

employment under various user-defined scenarios.
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The ASAC Air Carrier Investment Model (Second Generation)

INTRODUCTION

NASA's Role in Promoting Aviation Technology

The United States has long been the world's leader in aviation technology for civil

and military aircraft. During the past several decades, U.S. firms have trans-

formed this position of technological leadership into a thriving industry with large

domestic and international sales of aircraft and related products.

Despite its historic record of success, the difficult business environment of the

recent past has stimulated concerns about whether the U.S. aeronautics industry

will maintain its worldwide leadership position. Increased competition, both

technological and financial, from European and other non-U.S, aircraft manufac-

turers has reduced the global market share of U.S. producers of large civil trans-

port aircraft and cut the number of U.S. airframe manufacturers to only two.

The primary role of the National Aeronautics and Space Administration (NASA)

in supporting civil aviation is to develop technologies that improve the overall

performance of the integrated air transportation system, making air travel safer

and more efficient, while contributing to the economic welfare of the United

States. NASA conducts much of the basic and early applied research that creates

the advanced technology introduced into the air transportation system. Through

its technology research program, NASA aims to maintain and improve the leader-

ship role in aviation technology and air transportation held by the United States

for the past half century.

The principal NASA program supporting subsonic transportation is the Advanced

Subsonic Technology (AST) program. In cooperation with the Federal Aviation

Administration and the U.S. aeronautics industry, the goal of the AST program is

to develop high-payoff technologies that support the development of a safe, envi-

ronmentally acceptable, and highly productive global air transportation system.

NASA measures the long-term success of its AST program by how well it con-

tributes to an increased market share for U.S. civil aircraft and aircraft component

producers and to the increased effectiveness and capacity of the national air trans-

portation system.

NASA' s Research Objective

To meet its objective of assisting the U.S. aviation industry with the technological

challenges of the future, NASA must identify research areas that have the greatest

potential for improving the operation of the air transportation system. Therefore,
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NASA seeks to develop the ability to evaluate the potential impact of various ad-

vanced technologies. By thoroughly understanding the economic impact of ad-

vanced aviation technologies and by evaluating how those new technologies

would be used within the integrated aviation system, NASA aims to balance its

aeronautical research program and help speed the introduction of high-leverage

technologies. To meet these objectives, NASA is building an Aviation System

Analysis Capability (ASAC).

Goal of the ASAC Project: Identifying and Evaluating

Promising Technologies

The principal goal of ASAC is to develop credible evaluations of the economic

and technological impact of advanced aviation technologies on the integrated

aviation system. These evaluations would then be used to assist NASA program

managers to select the most beneficial mix of technologies for NASA to invest in,

both in broad areas, such as propulsion or navigation systems, and in more spe-

cific projects within the broader categories. Generally, engineering analyses of

this kind require multidisciplinary expertise, possibly using several models of dif-

ferent components and technologies, giving consideration to multiple alternatives
and outcomes.

Airline Economics and Investment Behavior Drive the ASAC

The ASAC differs from previous NASA modeling efforts in that the economic

behavior of buyers and sellers in the air transportation and aviation industries is

central to its conception. To link the economics of flight with the technology of

flight, ASAC requires a parametrically based model that links airline operations
and investments in aircraft with aircraft characteristics. That model also must

provide a mechanism for incorporating air travel demand and profitability factors

into the airlines' investment decisions. Finally, the model must be flexible and

capable of being incorporated into a wide-ranging suite of economic and technical

models that are envisioned for ASAC. The remainder of this report describes a

second-generation Air Carrier Investment Model, developed by LMI, that meets

these requirements.
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The ASAC Air Carrier Investment Model (Second Generation)

ECONOMIC AND STATISTICAL DERIVATION OF THE

BASIC ASAC AIR CARRIER INVESTMENT MODEL

Introduction

In creating the ASAC Air Carrier Investment Model (ACIM), we had some spe-

cific goals in mind. A primary objective was to generate high-level estimates

from broad industry-wide supply and demand factors. We envisioned being able

to forecast the demand for air travel under a variety of user-defined scenarios.

From these air travel demand forecasts, we then could estimate the derived de-

mand for the factors of production, the most important being the number of air-

craft in the fleets of U.S. passenger air carriers. We could also gauge the financial

health of the airline industry as expressed in its operating profit margins.

To create the model, we first identified 85 key U.S. airports from which flights

originate; then we developed airport-level demand models for passenger service

provided by major air carriers. Furthermore, we linked the air carrier-specific

demand schedules to an analysis of the carriers' technologies via their cost func-

tions expressed in terms of the prices of the major inputs--labor, fuel, materials,

and flight equipment. Flight equipment was modeled in an especially detailed

way by incorporating some key operating characteristics of aircraft.1

From the cost functions, we generated derived demand schedules for the factors of

production, in particular aircraft fleets. The derived demand schedules are func-

tions of the price of the factor of production, prices of other factors, parameters

that describe the aircraft and the network used by a carrier, and the level of pas-

senger service supplied.

Because it is so capital-intensive, the airline industry must earn an operating profit

margin of between 4 and 6 percent if it is going to maintain and expand its aircraft

fleet. Accordingly, we added an operating profit margin constraint to the model.

When this option is activated, passenger fare yields are adjusted up or down to

ensure that the target operating profit margins are met.

lActing under subcontract to LMI, Professor Robin Sickles of Rice University and Professor
David Good of Indiana University generated the data sets and performed an econometric study of
major U.S. passenger airlines. They were assisted by Anthony Postert, a Ph.D. student at Rice
University. See the bibliography for a listing of previously published studies by Sickles and
Good.



Overview of the Basic Air Carrier Investment Model

As shown in Figure 1, the basic Air Carrier Investment Model starts with the fac-

tors affecting the demand for scheduled passenger air travel at the airline and air-

port levels. It then examines the determinants of airline cost functions and the

resulting industry supply curve. The objective of both analyses is to obtain

parametric estimates for the air travel demand and airline cost functions. These

parametric estimates can then be combined with user-specified values of key sup-

ply and demand variables to generate industry-level forecasts of revenue passen-

ger-miles (RPMs) flown, 2 airline employment, number of aircraft in the fleet, and

operating margins under various scenarios.

Figure 1. Schematic of the Basic Air Carrier Investment Model

1. Estimate airline

and airport-level demand

i
Own fare yield 1

Competitor fare yield l
Per capita income •
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Unemployment rate

2. Estimate airline cost functions
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Stage length
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Aircraft age 1 [
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5. Outputs from scenarios

Fare yield

Income growth

Population growth

Unemployment rate

Labor costs

Energy costs

Materials costs

Capital costs

Average stage lengths
Load factor

Average seats per aircraft

Average age of aircraft

Percentage jets

Percentage wide-bodied aircraft

Demand

Supply

, r

Travel demand

Airline cost functions

3. Parametric estimates

4. Scenario variables

2One revenue passenger (person receiving air transportation from the air carrier for which re-

muneration is received by the air cartier) transported one statute mile.
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Air Travel Demand

Our first analytical task was to develop a model of demand for an airline's pas-

senger service. From a particular airport at origin i, carrierj will generate a cer-

tain level of passenger traffic. The U.S. Department of Transportation's (DOT' s)

Origin and Destination data record a sample of all tickets; from these, the RPM

service originating at a particular airport for a particular carrier was constructed.

Demand for a carrier's service is driven by the carrier's passenger fare yield

(measured by the average ticket price for flights originating at airport i divided by

the average number of RPMs flown), its competitors' yields, and the size and eco-

nomic prosperity of the market. We modeled the economic characteristics of the

Standard Metropolitan Statistical Area (SMSA) surrounding the 85 airports in the

study in terms of the area's population, per capita income, and unemployment

rate. The period under consideration was from the first calendar quarter of 1979

through the last calendar quarter of 1992.

The demand function, in equation form, is

qt, i,j = Dt, i,j(Pt, i,j'Pt,i,c,Xt, i ), [Eq. 1]

where qt, i,j is the scheduled demand (in RPMs) originating at time t from airport i

for carrier j; Pt, i,j is the average yield for service originating at time t from airport

i for carrier j; and Pt, i,c is the average yield for the other carriers generating traffic

at time t from airport i. The xt, i are the other demand characteristics at time t for

airport i. Conventional treatments for firm and airport fixed effects were used.

These effects capture those important characteristics of a particular city that are

not easily measured, such as tourism effects. We used a log-log specification for

Equation 1, so that the regression coefficients may be interpreted as elasticities.

Total demand for an air carrier's passenger service was then constructed by sum-

ming the airport-specific demand equations. In terms of Equation 1, the total de-

mand for a carrier's service is given by

ap

= Y_ qt,i, j [Eq. 21qt,j i= 1

where ap is the number of airports (85).



Table1showsthedemandvariablesthatwereincorporatedinto themodel. All of

the explanatory variables were found to be statistically significant at the 95 per-
cent level of confidence. 3

Table 1. Demand Variables

Variable Name Coefficient T-ratio

Own fares

Competitors' fares

Per capita income

Population

Unemployment rate

LNAVEOWN

LNAVEOTHER

LNPCI

LNPOP

LNUNRATE

-1.165

0.095

1.334

1.228

-0.121

-46.00

1.83

8.33

10.64

-4.63

Air Travel

Note: Estimates of firm and airport variables are not reported.

Supply

The second major component of our econometric study explains total carrier costs

in terms of output quantities, factor prices, aircraft attributes, and network traits. 4

The cost analysis was based mainly on observations from the Department of

Transportation (DOT) Form 41 data (discussed in more detail in Appendix A).

The cost data follow 17 U.S. passenger air carriers with quarterly observations

between the beginning of 1970 and the end of 1994. These firms were the largest

U.S. air carriers (or their descendents) that were operating at the time of deregula-

tion. This provides nearly total coverage of scheduled air traffic in 1970, to more

than 85 percent of the scheduled passenger air traffic by 1994. From the DOT

Form 41 data, we generated a separate set of demand equations for each of the

carrier's factors of production based on standard economic assumptions concern-

ing the cost-minimizing behavior of a carrier. In turn, these demand equations

permit examinations of the impact of factor price and factor productivity changes,

fleet and network configurations, and aircraft operating characteristics.

3The partial regression coefficients show the effects of changes in the independent variables
(e.g., own fares, and competitors' fares) on the dependent variable (i.e., total demand for an air
carrier's passenger service). The T-ratios show the degree to which the partial regression coeffi-
cients are statistically different from zero. For degrees of freedom over 30, a T-ratio of 1.96 pro-
vides 95 percent confidence that the partial regression coefficient is not zero.

4Because of some double-counting of labor costs, the supply coefficients published in Win-
grove et al., 1996, were wrong and had to be reestimated. Additional years were also included in
the data set. The revised values are shown in this report.



The ASAC Air Carrier Investment Model (Second Generation)

Scheduled RPM traffic for carrierj at time t was constructed as the sum of origi-

nating traffic supplied by the cartier for all airports from which it offered flights.

This was the first of the two outputs considered in the cost function below. The

second was the level of nonscheduled RPM service. The two generic output cate-

gories at time t for carrierj are designated Yt,j,1 and Yt,j,2 for scheduled and non-

scheduled RPM demand, respectively. The factors of production are labor,

energy, materials, and capital. Factor prices are labeled w. In the model, capital

refers to aircraft fleets only. Capital other than aircraft, such as ground structures

and ground equipment, is included in the materials category. Omitting the time

and firm subscripts, the transcendental logarithmic (translog) cost function is

given by

2 2 2

lnC=ao+Zi=lailnYi+Z Z aijlnyilnyj+
i<_j j=l

Zi41fli tnwi + Z_<_qZ_=lflpq lnwp lnwq +

Zi41Pi aircraft attributes i In Wcapita I "+ _i2=1 _t_ network traits i

[Eq. 3]

Cost shares for labor, energy, and materials are given by

4

M/= fl;+ _,,flij lnwj [Eq. 4]
j=l

The cost share for capital is

4 4

Mcapital = _capital + Z _capital,j In w j + Z P J aircraft attributes j
j=l j=l

[Eq. 5]

The translog cost equation can be viewed roughly as a second-order approxima-

tion of the cost function dual to a generic production function. Symmetry and lin-

ear homogeneity in input prices are imposed on the cost function by the
restrictions

aij =a/,,Vi, j;_j = flji,Vi, j; Z,fl_ = 1;Zj_j =O;and Ejpj =0

Summary statistics based on the translog cost equation and its associated share

equations are provided by the Morishima and Allen-Uzawa substitution elastici-



ties.5 Severalmeasuresof returnsto scalecanalsobeobtainedfrom theparame-
ter estimates.

Aircraft attributesaremodeledfrom variouscharacteristicsof theaircraftfleet. A
majorcomponentof airline productivitygrowthis measuredby changesin these
attributesovertime. For example,all otherthingsbeingequal,neweraircraft
typesareexpectedto bemoreproductivethanolder types. Themostsignificant
contributionto productivity growthin the1960swastheintroductionof jet
equipment.While this innovationwaswidely adopted,it wasnot universalfor
cardersthroughoutthedatasample.Newerwing designs,improvedavionics,and
morefuel-efficientpropulsiontechnologiesalsomakeflight equipmentmorepro-
ductive. Onceanaircraftdesignis certified,a largeportionof thetechnological
innovationbecomesfixed for its productivelife.

In anengineeringsense,transportationindustriestendto becharacterizedby in-
creasingreturnsto equipmentsize. Fixedcostsfor fuel, pilots, terminalfacilities,
andevenlandingslotscanbespreadovermorepassengers.However,largeair-
craft sizeis notwithout potentialdiseconomies.As equipmentsizeincreases,it
becomesmoredifficult to fine-tuneair traffic scheduledcapacityonaparticular
route. Becauseairlinecapacity(reflectedby availableseat-miles)is concentrated
into fewerandfewerdepartures,quality of servicealsodeclines(theprobability
decreasesthataflight is offeredatthetime apassengerdesiresit most). This
raisesparticulardifficulties in competitivemarketswhereanairline's capacity
mustbeadjustedin responseto thebehaviorof rival carders.Deregulationhas
accentuatedthis liability by virtually eliminatingmonopoliesin domestichigh-
densityair travelmarkets. On theotherhand,deregulationhasincreasedthetotal
volumeof traffic throughmorevigorousfarecompetition,somewhatattenuating
this liability. In anyevent,theoperatingeconomiesof increasedequipmentsize
mustbetradedoff againstlimited flexibility.

Two attributesof thecarrier'snetworkarealsoincludedin themodel: average
stagelengthandpassengerloadfactor. Stagelengthenablesusto accountfor dif-
ferentratiosof costsdueto ground-basedresourcescomparedwith costsattribut-
ableto theactualstagelengthflown. Shorterflights useahigherproportionof
ground-basedsystemsperpassenger-mileof outputthando longerflights. Also,
shorterflights tendto bemorecircuitouslyroutedby air traffic controlandspend
a lower fractionof time atanefficient altitudethanlongerflights. Passengerload
factorcanbeviewedasacontrolfor capacityutilization andmacroeconomicde-

5TheMorishimaandAllen-Uzawasubstitutionelasticitiesaremeasuresofthedegreetowhich
thevariousfactorsofproductionmaysubstituteforoneanother,holdingfactorpricesandthelevel
ofproductionconstant.
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mand shocks. Many transportation studies also interpret it as a proxy for service

quality. As load factors increase and the network becomes less resilient, the num-

ber and length of passenger flight delays generally increase as do the number of

lost bags and ticketed passengers who are bumped. Inflight service levels also

decline since the number of flight attendants is not generally adjusted upward as

the passenger load factor increases.

Estimates of the long-run cost function and summary statistics for various elas-

ticities are provided in Table 2.

Table 2. Supply Variables

Variable Name Coefficient T-ratio

Labor price

Labor price squared

Labor x energy
Labor x materials

Labor x capital

Energy price

Energy price squared

Energy x materials

Energy x capital

Materials price

Materials price squared

Materials × capital

Capital price

Capital price squared
Scheduled demand

Scheduled demand squared
Nonscheduled demand

Nonscheduled demand squared

Scheduled x nonscheduled demand

Stage length
Load factor

Average seats

Average age

Percentage jets a

Percentage wide-bodied aircraft a

LNLP

LNLpA2

LNLPEP

LNLPMP

LNLPKP

LNEP

LNEpA2

LNEPMP

LNEPKP

LNMP

LNMpA2

LNMPKP

LNKP

LNKP^2

LNSQ

LNSQ^2

LNNQ

LNNQA2

LNSQNQ

LNSL

LNLF

XLNAS

XLNAA

XXPJ

XXPWB

0.376

-0.017

-0.011

0.047

-0.019

0.206

0.119

-0.106

- 0.002

0.297

0.099

- 0.039

0.121

0.060

0.844

- 0.090

0.098

- 0.122

0.150

-0.216

-0.818

0.027

- 0.009

0.002

- 0.020

N/A

- 1.06

- 2.43

3.60

- 2.84

N/A

35.63

- 30.60

-0.91

N/A

7.91

- 6.73

N/A

12.13

62.62

- 2.88

7.99

- 2.76

3.96

- 9.54

- 20.85

5.08

- 1.59

1.61

- 12.36

Note: Estimates of firm and quarterly dummy variables are not reported.

aAII other variables are expressed as natural logarithms.

11



USING THE MODEL

General Approach

The joint model of supply and demand for commercial passenger air service speci-

fied in our study and the inferences about factor demands that are imbedded in our

econometric results enable us to simulate the effects of emerging technologies.

We can also forecast the growth in total system demand for passenger service and

for factor inputs such as the number of aircraft in the fleet.

We follow several general steps when evaluating scenarios: First, we predict the

change in RPMs on the basis of economic forecasts and the demand equation es-

timates. Next, we estimate airline revenues on the basis of forecast RPM growth

and hypothesized changes in ticket prices. Then, we estimate airline operating

costs on the basis of forecasted RPM growth, changes in input prices, and changes

in aircraft and network characteristics. We predict the aircraft inventory from air-

line operating costs, the capital share equation, and hypothesized changes in air-

craft price and aircraft size. We follow a similar procedure to estimate airline

employment. Finally, we compare forecasts from the second-generation ASAC

Air Carrier Investment Model with predicted changes in RPMs, aircraft fleet, and

operating margins from other published forecasts.

Forecasting Changes in Travel Demand, Airline Costs,

and Aircraft Fleets

TRAVEL DEMAND

To predict changes in travel demand, the model starts with actual airline output

for calendar year 1995 and changes it over time based on the estimated demand

function coefficients and predicted changes in the explanatory variables. The

equation for predicting annual changes in demand is

5

%ARPM = _fl_ %A X, [Eq. 6]
i=1

where the _i are the coefficients estimated from the econometric model and the X i

are the explanatory variables. Due to the logarithmic structure of the statistical

model, the coefficients are interpreted as elasticities. For example, the coefficient

of 1.334 on per capita income means that a 1 percent increase in per capita income

raises the demand for air travel by 1.334 percent.
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The ASAC Air Carrier Investment Model (Second Generation)

The annual percentage change in per capita income, population, and unemploy-

ment are parameters entered by the user. The baseline model uses estimates of

population growth published by the Bureau of Labor Statistics. Per capita income

growth is not directly input into the model. Instead, the user provides estimates of

the long-run annual growth rates in gross domestic product and population. The

model then calculates the annual change in per capita income and uses it to gener-
ate the demand forecast.

Fare variables are treated in one of two possible ways. User-defined rates of

change in fare yields can be input directly into the model, and their effects will be

estimated immediately. The second mode of operation, as described later in the

report, enables the user to set a series of profit rate constraints for each of the four,

5-year intervals in the forecast period. The user then instructs the model to vary

the fare yields until the profit rate constraints are met.

The econometric estimates of the demand function are based on quarterly traffic

volume for each airline and airport in the sample. While it is possible to build the

demand forecasts up from this highly detailed level, it would be time-consuming

and probably add more inaccuracy to the final estimate. Instead, we use the actual

RPM data for the domestic and international routes of U.S. scheduled passenger

airlines as the starting point, and grow demand at the rate indicated by Equation 6.

This imposes the constraint that output grows at the same rate for each airline.

While obviously inaccurate, this is not a significant bias in the model since our

goal at this time is to forecast industry-wide demand, costs, employment, and air-

craft fleets. For long-run forecasts such as those generated by the model, it is im-

material whether the aggregate demand for air travel is satisfied by a particular
carrier such as United Airlines or Delta Airlines.

For purposes of forecasting fares and for calculating industry travel demand, the

own-fare and other-fare changes are assumed to be identical. Therefore, the over-

all price effect is the sum of the two coefficients. The net effect shows that air

passenger travel is sensitive to price changes, but not unusually so. The model

predicts that a 10 percent reduction in fares will increase RPMs by 10.7 percent.

This implies that after holding other factors constant--such as population and in-

come---changes in air fares will have virtually no effect on total revenues col-

lected by the industry.

AIRLINE COSTS

Equation 3 describes the airline cost equation estimated for the model. As shown,

total costs are a function of airline outputs, factor costs, and aircraft and airline

network attributes. Using the supply parameter estimates shown in Table 2,

13



Equation3 caneasilybeusedto produceatime seriesof predictedchangesin air-
line costs.Usingthelog-logstructureof theequationto our advantage,thefol-
lowing forecastequationis derived.

2 2 4

%ATC= _a i %A Yi Jr ___O_ij %A Yi %A yj -t- _._fli %A w i +
i=l i<_j i=1

4 4 4

___ _ _pq % A W p %A W q .-_- ___ _o i %A aircraft attributes i % A Waircra fl [Eq. 7]
p<_q q=l i=l

2

+ ___ %Anetwork traits i
i=1

where %A means annual percentage change in the variable.

In Equation 7,factor costs, aircraft attributes, and network traits are user-defined

variables in the basic ASAC Air Carrier Investment Model. For labor and capital,

changes in factor costs are the net of price and productivity effects. Scheduled

and nonscheduled output changes are estimated directly in the demand model

forecasting component and then input into the cost functions. Therefore, changes

in output cannot be made directly by the user.

As with the demand forecasts, total costs are projected forward from the baseline

defined by the reported data. The model increases the costs at the rates predicted

by the model, given output forecasts, factor cost changes, and changes in aircraft
and network characteristics.

AIRCRAFT FLEETS

Estimating the aircraft fleet required to meet the forecasted travel demand is a

somewhat more involved process. Four factors enter into the forecast of aircraft
fleets:

• the changes in total airline costs,

• the estimated share of aircraft costs in total costs,

• the forecasted change in average aircraft price, and

• the forecasted change in average aircraft size.

Changes in total airline costs were discussed in the previous section. Referring to

Equation 5, the aircraft share of total costs is a function of factor costs and aircraft

14
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attributes. As with the cost and demand forecasts, we update the capital share

equation through the forecast period as a function of the rates of change in the

factor cost and aircraft attribute parameters. The equation for changes in the

capital cost share is

4

A Aircraft Cost Share = --[3_ircraft + Y_1 "fl_ircraft' j % k w_ji=

4

+ j _= 1pj % A aircraft attributesj

[Eq. 8]

The resulting capital share time-series predicts the fraction of total costs that will

be spent on aircraft investments. By multiplying this share estimate by total costs,

we obtain a time-series of capital investments in aircraft.

The final pieces of information needed to calculate the number of planes in the

aircraft fleet are the predicted levels of average aircraft price and average aircraft

size. The rate of growth in aircraft size is measured by the average number of

seats. The product of average aircraft price (holding size constant) and average

size are divided into the aircraft investment to get the estimated number of planes

in each airline's fleet. In equation form, the formula is
r

number of aircraft =
(capital share x total cos t)

(aircraft price × average size)
[Eq. 9]

The required fleets for all the airlines are then summed to get the industry esti-
mate.

FACTOR PRODUCTIVITIES

Once time-series have been generated for RPMs, number of airline workers, and

number of planes in the fleet, it is possible to estimate factor productivities for

labor and capital. In the baseline scenario, labor productivity increases from 1.25

million RPMs per worker in 1995 to 1.47 million RPMs per worker in 2015.

Similarly, capital productivity increases from 132 million RPMs per plane in 1995

to 184 million RPMs per plane in 2015. We make use of these year-by-year base-

line factor productivities when alternative scenarios are evaluated. Specifically,

except where NASA technologies explicitly impact them, we assume that al-

though other changes in supply and demand variables will impact the airlines'

cost equations, factor productivities will not change.

15



ENHANCEMENTS TO THE BASIC MODEL

Converting Technical Impacts into Economic Effects

In the second generation ACIM, we model the impacts of NASA technologies in

the following manner: We first assume that NASA technologies begin to enter

the fleet in 2005 and all new aircraft purchased during the period 2006 to 2015

will incorporate the new technology. Additionally, we assume that 5 percent of

the existing fleet will be replaced or upgraded annually to take advantage of the

new technology. If travel demand grows at a compound annual rate of 5 percent

during the period 2005 to 2015 and all the other assumptions hold, approximately

69.3 percent of the RPMs flown in 2015 will be in aircraft that incorporate the

new technology. This figure defines the baseline penetration rate for the new

technology and can be varied by the user.

Translating the technical impacts of the new technology into economic effects is

similarly straightforward. The first step is to estimate the gross impact of the

technology in terms of eight functional cost categories. These categories are:

flight personnel costs, aircraft fuel, maintenance costs, other variable operating

costs, fixed operating costs, flight equipment price, flight equipment productivity,

and other capital costs. Gross changes in these functional cost categories are

multiplied by the penetration rate and then converted into compound annual rates

of change for the 10-year period 2006 to 2015.

Because the ACIM uses four factors of production in the airline cost function, it is

necessary to convert the compound annual rates of change in the eight functional

cost categories into comparable changes in labor, energy, materials, and capital.

The approach we used to create this cross-matrix is described in more detail in

Appendix B. The principal relationships are shown in Table 3.
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Table 3. Functional Cost Categories versus Factors of Production

Cost Category

Flight personnel

A/C fuel

Maintenance

Other variable operating costs

Fixed operating costs

Flight equipment

Other capital

Totals

From supply variable estimates

Labor
(%)

13.8

4.1

11.6

5.8

35.3

37.6

Production factors

Energy Materials Capital Totals
(%) (%) (%) (%)

18.4

18.4

20.6

4.2

13.9

13.4

2.0

33.5

29.7

12.7

12.7

12.1

13.8

18.4

8.3

25.6

19.3

12.7

2.0

100.0

100.0

We made a simplifying assumption about the way in which we model the impact

of NASA technologies. In cases of labor, energy, and materials, gross changes in

the functional cost categories are modeled as changes, both positive and negative

as necessary, in the factor productivities. The rationale is that NASA technologies

are unlikely to change the prices for these factors of production. For capital, we

separate the price and productivity effects because some NASA technologies may

impact the price of airframes and/or aircraft engines.

Disaggregating the Economic Effects

The next step is to map the high-level estimates from the basic ACIM into a finer

level of detail. This enables an appraisal of to whom the economic benefits of in-

vestment in new aircraft technology accrue. This appraisal is accomplished by a

set of analytical modules that are dynamically linked to the basic ACIM. We refer
to these modules as the ACIM Extensions. The Extensions estimate

• the retirement schedule for the 1995 fleet;

• the replacement costs for aircraft retired due to the old age from the cur-

rent fleet;

the number, schedule, and costs of Stage 2 aircraft that are replaced prior

to their expected retirement date due to noise regulations (rather than

hushkitted);
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• the seat-size categories for the new Stage 3 aircraft added to meet RPM

growth;

• the market shares for the new Stage 3 aircraft added to meet replacement

demand and RPM growth; and

• the workyears of employment at airframe manufacturers resulting from the
sales of U.S.-manufactured aircraft to U.S. carders.

The end result is that any change in aircraft or aviation technology can be trans-

lated to benefits accruing to any or all of the following three parties:

• the flying public, in the form of lower ticket prices and/or expanded serv-

ice;

• U.S. aircraft manufacturers, in the form of increased volume of aircraft

produced; and

• U.S. passenger air carders, in the form of jobs and increased traffic.

This implies that alternative technological investment strategies can be evaluated

according to the magnitude of the benefits produced and/or the distribution of
those benefits.

Figure 2 shows a schematic of the ACIM Extensions. The model starts with vari-

ous outputs from the basic ACIM. Also used are 2 databases--the aircraft inven-

tory database and the historical jet delivery database--and a set of user-defined

specifications or scenarios. There are two tracks of analysis: the first, a steady-

state or static type of analysis, whose results include the effects of new technology

but are independent from it, and the second, a dynamic analysis whose results are

dependent upon the effects of new technology. The results of these two analyses
then are combined to estimate national economic effects.
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The ASAC Air Carrier Investment Model (Second Generation)

Figure 2. Schematic of the ACIM Extensions
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The static track performs the replacement analysis of the current fleet. This analy-

sis is static in the sense that replacement purchases are somewhat unresponsive to

the introduction of new technology. This unresponsiveness is a function of the

huge capital costs of acquiring an aircraft as well as financial losses associated

with prematurely retiring an aircraft. Consequently, the introduction of new tech-

nology into the existing fleet occurs primarily because new aircraft are used as

replacements for retired aircraft. New technology only marginally affects the ac-

tual retirement schedule in that some premature retirements will occur among air-

craft that are already near the end of their useful lives.

The static analysis consists of three steps: estimation of the retirement schedule of

the current fleet, adjustments to that schedule due to noise regulations, and calcu-

lation of the replacement costs for retired aircraft.

The dynamic analysis performs an analysis of the additional aircraft purchased to

meet future RPM growth. An estimate of the number of additional aircraft pur-

chased in any given year is an output of the basic ACIM. The dynamic analysis

decomposes that aggregate number into a distribution of additional aircraft pur-
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chased per seat-size category. Then the acquisition costs of those aircraft are es-
timated.

The total number of new aircraft purchased, as well as their total market value, is

then found by summing the results of the static and dynamic tracks. Market share

data are used to project the portion of sales to U.S. owned carriers by U.S. air-

frame manufacturers. Finally, employment effects are estimated.

As a last step, differences in aircraft produced, their corresponding market values,

the U.S. portion of those sales, and resulting employment levels may be compared

across scenarios. Details of the step-by-step analysis are shown in Appendix C.

SCENARIOS AND FORECASTS

Operating Profit Margins and Fare Yields

An early version of our model predicted increasing profitability for the airline in-

dustry during the forecast years. This was clearly unreasonable for the highly

competitive airline industry. To make the model reflect actual industry conditions

more faithfully, three important characteristics of the industry were incorporated
into the model:

• competition among airlines that keeps operating profits at realistic levels,

• links between airline costs and fare yields, and

• interdependency between fares and profitability.

Our model accommodates these features with a straightforward extension. It

builds an industry-wide target profit rate into the model. To meet the target profit

rate, the model adjusts fare yields until the target is met. This approach incorpo-

rates the impact of competition into the forecast and enables the degree of compe-

tition to be set directly through the target margins. By choosing an appropriate

profit rate, the user can also ensure that adequate capital is available to finance the

purchase or lease of the aircraft needed to satisfy the growing demand for air
travel.

As implemented in the model, separate target profit rates can be set for each of the

four, 5-year intervals within the forecast period. Specifying four distinct periods

permits the user to include changes in the economic environment during the fore-

cast period. For example, many financial analysts today claim that airlines will
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The ASAC Air Carrier Investment Model (Second Generation)

not purchase additional aircraft until their balance sheets are "repaired." One way

to implement this concept is to set a higher profit margin during the first 5-year

interval and then reset the target at a lower, historically reasonable level. Such a

scenario will keep fares and profits at a higher level for 5 years, while reducing

the derived demand for aircraft and other inputs.

The model does not impose the margin constraint in every single year. Instead,

the model iterates changes in fare yield until the target margin in the final year of

each interval is satisfied. Since the model uses a constant rate of fare change

within each 5-year interval, the operating margin does not equal the target until

the final year of the period. In practice, the profit margin moves in equal incre-

ments within the interval. If the target margins are the same at the beginning and

end of the 5-year interval, the margin will be the same in each year.

This approach explicitly lets fare changes be set by the degree of competition and

the level of costs throughout the industry. It allows for a market-based mecha-

nism for translating cost changes into profits and fare changes. One implication

of this approach is that cost-reducing technologies will primarily benefit the trav-

eling public and not result in higher profits for the airlines over the long run.

While some airlines may benefit for a short while, competition will eventually

drive fares down as most airlines adopt the cost-reducing technology.

This analysis is consistent with economic theory and also appears to be an accu-

rate description of the airline industry. The relatively low profit margins reported

by the airline industry demonstrate the speed with which innovations and new

technologies diffuse throughout the industry. The ease of entry for new airlines

with access to cheap older aircraft keeps profit margins low, and it is unlikely that

this situation will change in the near future.

Several alternative profit measures could be used to implement this approach in

our model. We chose to use the operating profit margin, which is revenues minus

operating costs, divided by revenues. The operating margin does not reflect inter-

est paid on debts or a return to common shareholders, both important elements of

cost in a capital-intensive industry such as the airlines. Capital expenses vary sig-

nificantly from airline to airline, and in particular, will be strongly affected by
whether the airline flies new or old aircraft.

An equally important question is what target operating margin should be used in

the model. Boeing states that an operating profit margin of about 5 percent is

probably required for the airline industry to remain healthy enough to meet in-

creasing travel demands and purchase new aircraft. An examination of the his-

torical data tends to confirm this conclusion. Figure 3 shows operating margins
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and the percentage change in aircraft fleets for nine major air carriers (American,

Continental, Delta, Eastern, Northwest, Trans World, United, USAir, and South-

west) from 1978 through 1993. While there is clearly a great amount of variabil-

ity in the year-to-year numbers, the years of greatest and most consistent growth in

fleets was the mid-1980s. This was also the only extended period of profitability

for the industry during these years. While the change in aircraft fleets may be

somewhat skewed because of the effect of mergers over this time, the numbers

clearly demonstrate a strong correlation between profitability and aircraft invento-
ries. The results are reinforced when one considers that new aircraft deliveries in

the early 1990s were frequently from orders placed much earlier. The chart dem-

onstrates clearly the importance of incorporating a limit on airline profits in the
investment model.

Figure 3. Operating Profit Margins and Aircraft Fleet Growth

for Nine Major Airlines
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Baseline Scenario

Using the baseline values specified in Appendix D for the supply and demand

variables, the second-generation ASAC Air Carder Investment Model projects

annual growth in travel demand of 4.56 percent for the period of 1995 through

2005. This prediction compares quite favorably with annual growth forecasts of
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4.74 percent and 4.36 percent from the Boeing Company (Boeing) and the Fed-

eral Aviation Administration (FAA), respectively. In terms of the number of air-

craft required to satisfy this growth in travel demand, the second-generation

ACIM projects annual growth in the U.S. scheduled passenger airline fleet of

2.63 percent for the period of 1995 through 2005. This prediction is lower than

Boeing's forecast of a 3.20 percent annual growth and the FAA's forecast of a

3.05 percent annual growth. The 121 to 170 seat class is projected to have the

greatest number of aircraft, while the 171 to 240 seat class is expected to experi-

ence the largest growth in percentage terms. Other details for the baseline sce-

nario are found in Appendix D.

Other Scenarios: Comparisons

To demonstrate the reasonableness and utility of our model, we evaluated a set of

alternative scenarios that correspond to the effects that various NASA AST pro-

gram elements might have. These are summarized in Table 4. Details of the

technology evaluations and illustrative printouts from the ASAC Air Carrier In-

vestment Model are in Appendix E.

Table 4. Baseline and Other Scenario Forecasts

Technology

Baseline

A

B

C

Gross changes for
affected variables

(%)

N/A

A/C fuel = -5

A/C fuel = -14

A/C price = +2

Flight crew = -4
A/C fuel = -4
Maintenance = -4

A/C productivity = +4

Compound annual
rates of change
in travel demand

(2005-2015)
(%)

4.17

4.23

4.31

4.31

Compound
annual rates of

change in
airline

employment
(2005-2015)

(%)

3.42

3.47

3.56

3.41

Compound
annual rates

of change in
aircraft fleet

(2005-2015)
(%)

2.53

2.58

2.67

2.38

CONCLUSIONS

To link the economics of flight with the technology of flight, NASA' s ASAC re-

quires a parametrically based model that links airline operations and investments

in aircraft with aircraft characteristics. That model also must provide a mecha-
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nism for incorporating air travel demand and profitability factors into the airlines'

investment decisions. Finally, the model must be flexible and capable of being

incorporated into a wide-ranging suite of economic and technical models that are

envisioned for ASAC.

The second-generation Air Carder Investment Model meets all of these require-

ments. The enhanced model incorporates econometric results from the supply and

demand curves faced by U.S. scheduled passenger air carriers. It uses detailed

information about their fleets in 1995 to make predictions about future aircraft

purchases. It provides analysts with the ability to project revenue passenger-miles

flown, airline industry employment, airline operating profit margins, number and

types of aircraft in the fleet, and changes in aircraft manufacturing employment

under various user-defined scenarios. Future work will extend the analysis to

other regions of the world, most notably Europe and Asia.
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Appendix A

Airline Production Data Description

INTRODUCTION

The airline production data set includes four inputs: labor; energy; flight capital;

and a residual category called materials that includes supplies, outside services,

and nonflight capital. The data set also includes two outputs: scheduled and non-

scheduled revenue passenger-miles--and two network traits: stage length and

load factor. Flight capital is described by four aircraft attributes: the average size

(measured in seats); the average age; and the separate proportions of aircraft in the

fleet that are jet-powered or wide-bodied designs.

Our most comprehensive data set includes information for the 17 largest U.S. air

carriers that were operating at the time of deregulation or their descendant airlines.

The carriers included are American, Braniff International, Continental, Delta,

Eastern, Frontier, North Central, Northwest, Ozark, Piedmont, Republic, South-

ern, Texas International, Trans World, United, USAir, and Western. This provides

nearly total coverage of scheduled air traffic in 1970, the beginning of the data, to

more than 85 percent of the scheduled passenger air traffic by 1994, the data set's

end. This information is quarterly, air carrier-specific information and results in

1,137 total observations. Attention was restricted to the traditional certificated

carriers because routine data reporting was well-established for them at the time

of deregulation. New entrants can be added to our data set with some difficulty.

However, it should be remembered that these carriers have little experience in

providing the often burdensome reporting required by Department of Transporta-

tion (DOT) Form 41 and that noncompliance results in virtually no sanctions.

Consequently, new entrant data tends to be of significantly lower quality. The

version of the data described in more detail below provides the largest, cleanest

data available on the production of U.S.-scheduled passenger air transport.

The procedure used in constructing the data set has changed considerably over the

last decade. As more and more data sources become available, it will change

further. One of the most significant factors in these changes has been an adapta-

tion to the changes in the reporting requirements of DOT Form 41. In order to

maintain comparability over time, data from all versions of Form 41 must be
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LABOR

mapped into a single version. The latest significant revision, which occurred in

1987, eliminated many of the specific functional accounts that were used previ-

ously. The most significant changes occurred in the areas of labor, supplies, and
outside services. This latest version of Form 41 data is the most restrictive in that

it provides the least detail in most cases. In other instances, the 1985 revision of

Form 41 data is somewhat more restrictive. However, many of these changes

were in place for only a short period of time. Where the 1985 restrictions were

most severe, 1987-equivalent accounts were estimated. This occurred most seri-

ously in the area of ground-based capital, where lease payments and capitalized

leases had to be allocated between flight and ground capital. In other cases, it

seemed reasonable to estimate 1985 accounts from the 1987 data provided. The

objective was to maintain as much detail as possible in all areas of air carrier pro-
duction.

The construction of the individual input and output categories is described in the

next several sections. In cases where price and quantity pairs for a specific input

or output are constructed, several subcomponents to that input or output are first

constructed. Then these are aggregated into a single input or output using a mul-

tilateral Tornqvist-Theil index number procedure. 1 The result of this procedure is

a price index (much like the consumer price index) that aggregates price informa-

tion for commodities having disparate physical units. When total expenditures of

the input or output category are divided by this price index, an implicit quantity

index is produced.

Labor, energy, materials, flight capital, and output are discussed in the sections
below.

The labor input was composed of 93 separate labor accounts aggregated into five

major employment classes (flight deck crew, flight attendants, mechanics, passen-

ger/cargo/aircraft handlers, and other personnel). This is shown in Table A-1.

We do not attempt to correct for differing utilization rates since we do not have

information on the number of hours worked by the labor inputs. Expenditures in

1This mathematical technique derives indexes from underlying utility, cost, production, reve-

nue, profit, or transformation functions. In this case, the transcendental logarithmic (translog) cost
function is underlying; expenditure shares are used to weight each subcomponent' s contribution to
the overall index number. For a detailed explanation, refer to Diewert (1976); Caves, Christensen,
and Diewert (1982); and Good, Nadiri, and Sickles (1992) in the Bibliography.
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Airline Production Data Description

these five subcomponents are constructed from the expenditure data in DOT

Form 41 Schedules P5, P6, P7, and P8.

Following the 1987 modification in Form 41, Schedules P7 and P8 were dramati-

cally simplified, eliminating many separate expense accounts. "Mechanics" and

"handlers" appear as lines 5 and 6 of the new Schedule P6. In order to be more

compatible with the new Schedule 6, trainees and instructors were moved into the

"other personnel" category. "Flight attendant" expense was calculated by sub-

tracting accounts 5123 and 5124 from Schedule P5 from line 4 ("total flight per-

sonnel") on the new Schedule P6.

Other labor-related expenses--such as personnel expenses, insurance, pension,

and payroll taxes--were included as labor expenses. The labor-related expenses,

accounts, and schedules from which they were obtained are listed in Table A-2.

Table A-1. Labor Costs

Schedule Accounts Subcomponent

P5

P6

P5 and P6

P7 and P8

P6, P7, and
P8

5123+5124

5524

5225.1+5225.2+5225.3+5225.9+5325.9+
5328.1+5328.2

6126.1+6126.2+6128.1+6226.1+6226.3+
6228.1+6326.1+6328.1+6526.1+6526.3+
6526.4+6528.1+6628.1+6828.1

5330+5331+5334+5335+5530+5531+5535+
6130+6131+6135+6230+6231+6235+6330+
6331+6335+6530+6531+6533+6535+6630+
6631+6635+6830+6831+6832+6834+6835+
5128.1+5528.1

Flightdeck crew

Flighta_endants

Mechanics

Passenger/cargo/aircraft
handlers

Other personnel

Table A-2. Labor-Related Expenses

Schedule Accounts Subcomponent

P5, P6, P7,
and P8

P5, P6, P7,
and P8

P5, P6, P7,
and P8

5136+5336+5536+6136+6236+6336+6536+
6636+6836

5157+5357+5557+6157+6257+6357+6557+
6657+6857

5168+5368+5568+6168+6268+6368+6568+
6668+6868

Personnel expenses

Insurance and pen-
sion

Payroll taxes
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Since labor-related expenses are provided on functional fines rather than on an

employment class basis, they were allocated to each of the five employment

groups on the basis of the expenditure share of that class. After the 1987 Form 41

changes, these three expenditure categories were provided on Schedule P6 as

lines 10, 11, and 12, respectively.

The accounts and schedules from the DOT Form 41, from which the carder em-

ployment quantity data were obtained, are shown in Table A-3.

Table A-3. Labor Head Counts

Schedule Accounts Subcomponent

P10

P10

P10

P10

P10

PIA

P1A

5123+5124

5524

25

6126.1+6226.1+6326.1+6526.1+6126.2+
6226.3+6526.3+6226.4+6526.4+7100

99 minus accounts above

Flight deck crew

Flight attendants

Mechanics

Passenger/cargo/aircraft
handlers

Other personnel

Full-time employees

Part-time employees

The quarterly total head count of full-time equivalent personnel was found by av-

eraging the monthly full-time personnel plus one-half of the part-time employees

over the relevant quarter.

In 1977, Schedule P10 was changed from a quarterly to an annual filing cycle.

This meant that allocations of head counts into specific employment categories

could not be done directly except for the fourth quarter of each calendar year.

Instead, the distribution of head counts among the five labor groups was interpo-

lated using the annual figures. The estimated head count in each group was found

by multiplying the interpolated percentage by the calculated full-time equivalent

headcount for that quarter. In 1983, Schedule P10 was simplified. This simplifi-

cation collapsed the handlers category into a smaller number of separate accounts,

but did not change the overall structure of our procedure.

Using the expense and head count information from above, the expense per per-

son quarter and the number of person quarters were calculated. The multilateral

Tornqvist-Theil price and quantity indices for the labor input were then derived.
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ENERGY

The objective of the energy input category is to capture aircraft fuel only. Fuel

that is used for ground operations and electricity are both captured in the materials

index. The energy input was developed by combining information on aircraft fuel

gallons used with fuel expense data per period. The schedules and accounts are
listed in Table A-4.

Table A-4.

Schedule Accounts Subcomponent

P5 5145.1 Aircraft fuel (cost in dollars)

T2 Z921 Aircraft fuel (gallons)

This input has undergone virtually no change because these accounts remained

substantially unchanged over the 23-year span of our data set. Even though only

one component exists, the multilateral Tornqvist-Theil index number procedure is

used to provide normalization of the data.

MATERIALS

The materials input is comprised of 69 separate expenditure accounts aggregated

into 12 broad classes of materials or other inputs that did not fit into the labor, en-

ergy, or flight capital categories. Carrier-specific price or quantity deflators for

these expenditure groups were unavailable. Instead, industry-wide price deflators

were obtained from a variety of sources. These price deflators were normalized to

1.0 in the third quarter of 1972. The classification of these expenditure accounts

are presented in Table A-5 along with the corresponding source for the price de-
flator.

In 1987, the modifications of Schedules P6 and P7 led to the elimination of hun-

dreds of separate account categories. In most cases, this did not affect the ability

to reconstruct the categories. The sources of information did change, however.

Advertising expense, passenger food, and landing fees appear as line 22, line 6,

and line 12 of the new Schedule P7, respectively. Expenses for aircraft mainte-

nance materials, communications, insurance, outside services and outside mainte-

nance, and passenger and cargo commissions appear as line 17, line 23, line 24,

line 25 + line 28, and line 26 + line 27 of the new Schedule P6. Ground equip-
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ment rental expense was line 31 of Schedule P6 minus account 5147 from Sched-

ule P5. Amounts for other supplies and utilities appear aggregated together as line

19 of new Schedule P6. These amounts were apportioned to the supplies and

utilities categories using the carrier's average proportion in these groups over the

1981 through 1986 periods. Ground equipment that is owned was unaffected by

the 1987 accounting changes.

FLIGHT CAPITAL

The number of aircraft that a carrier operated for each different model of aircraft

in the airline's fleet was collected from DOT Form 41, Schedule T2 (account

Z820). Data on the technological characteristics for the approximately 60 types of

aircraft in significant use over the period 1970 through 1992 were collected from

Jane's All the World's Aircraft (1945 through 1982 editions).

First, for each quarter, the average number of aircraft in service was constructed

by dividing the total number of aircraft days for all aircraft types by the number of

days in the quarter. This provides a gross measure of the size of the fleet (number

of aircraft).

In order to adjust this measure of flight capital, we also construct the average

equipment size. This was measured with the highest density single-class seating

configuration listed in Jane's for each aircraft type. The fleetwide average was

weighted by the number of aircraft of each type assigned into service. In some

cases, particularly with wide-bodied jets, the actual number of seats was substan-

tially less than described by this configuration because of the use of first-class and

business-class seating Our purpose was to describe the physical size of the air-

craft rather than how carriers chose to use or configure them.

We use the average number of months since the Federal Aviation Administra-

tion's type-certification of aircraft designs as our measure of fleet vintage. Our

assumption is that the technological innovation in an aircraft does not change after

the design is type-certified. Consequently, our measure of technological age does

not fully capture the deterioration in capital and increased maintenance costs

caused by use. Our measure does capture retrofitting older designs with major

innovations, if these innovations were significant enough to require recertification

of the type.

Finally, it is clear that the major innovation that took place during the 1960s and

1970s was the conversion to jet aircraft. While many carders had largely adopted

A-6



Airline Production Data Description

this innovation prior to the study period, it was by no means universal. Many of

the local service airlines used turboprop aircraft as a significant portion of their

fleets. We implement this aspect by measuring the proportion of aircraft in the

fleet that are jet powered. The proportion of wide-bodied aircraft was also calcu-
lated.

Table A-5. Materials

Schedule Accounts Price index Classification

P5

P8

P6, P7, P8

P5, P6

P6, P7, P8

P6, P7, P8

P6, P7, P8

P6

P8

P6, P7, P8

B1, P6, P7

P7

5246.1+5246.2+5246.3+
5243.1+5243.2+5243.3

6660+6662

Producer prices:
metals and metal

products
McCann Erickson

Advertising Index

Aircraft mainte-
nance materials

Advertising

5337+5537+6137+6237+
6337+6537+6637+6837

5155.1+5355.1+6855.1+
6256.0+5556.0

5243.9+5343.9+5543.9+
6143.9+6243.9+6343.9+
6543.9+6643.9+6843.9

5350+5550+6150+6250+
6350+6550+6650+6850+
5353+5553+6153+6253+
6353+6553+6653+6853+
5354+5554

5338+5538+6138+6238+
6338+6538+6638+6838

5551

6539.1+6539.2

5347+5547+6147+6247+
6347+6547+6647+6847

Consumer prices:
telephone services

Industry average
expense per aircraft
mile flown

Gross National Product
deflator for services

Producerprices:
total manufa_uring
nondurables

Consumer prices:
electric, gas (89%),
and sanitary service
(11%)

Producer prices:
processed foods

Consumer prices:
air fares

GNP deflator for
nonresidential fixed
investment

Communications

Insurance

Outside services
and aimra_ mainte-
nance

Supplies

Utilities

Passenger food

Commissions

Ground equipment,
rented

(See note below)

6144

Jorgensen-Hall
user price

Landing fees per
capacity-tonlanded

Ground equipment,
owned

Landingfees

Note: Total e_ )enditures associated with ground equipment and structures were calculated using a
perpetual inventory method with a 1958 benchmark, assuming a 2O-yearexpected life, straight-line de-
preciation, and interest rates assuming a Moody's BAA bond rating. The tax advantages, including in-
vestment tax credits (along with the special transition rules under the 1986 tax revisions) relevant at the
time were also incorporated into the carrier's expenditure on ground capital owned. As with the labor
index, a multilateral Tornqvist-Theil index number procedure was used to generate price quantity combi-
nations for each carrier at each quarter over the 23-year span of the data.
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OUTPUT

Our data set provides several measures of airline output and its associated char-

acteristics. The most commonly used measure of carrier output is the revenue

ton-mile. Our data set provides this measure as well as measures of revenue out-

put that are disaggregated into scheduled and nonscheduled output. Nonscheduled

output includes cargo and charter operations. We further provide measures of air-

line capacity. This again can be disaggregated into scheduled and nonscheduled

operations. Revenue and traffic data were available from DOT Form 41. These

data enabled us to construct price and quantity figures for seven different outputs

produced by the typical airline. These different services and the accounts from

which the revenue data were obtained are given in Table A-6. Again, the price

per unit (passenger-mile or ton-mile) of the relevant service was constructed by

dividing the revenue generated in the category by the physical amount of output in

that category. These prices were normalized to 1.0 in the baseline period (the

third quarter of 1972).

In cases where a carrier offered only one type of service (the convention was to

call this "first class"), the service was redefined to be coach class. The reporting

of revenue and traffic in charter operations between cargo and passenger service

was very sporadic. These two outputs were combined into a single category with

passenger-miles converted to ton-miles, assuming an average weight of 200

pounds per passenger (including baggage). Changes in DOT Form 41 in 1985 led

to the elimination of the distinction between express cargo and air freight. Conse-

quently, these two categories also were collapsed.

Table A-6. Carrier Revenues and Output Quantities

P3
T1

P3

T1

P3
T1

P3
T1

P3

T1

P3
T1

P3
T1

Schedule Accounts Type of service

3901.1
K141

3901.2

K142

3905
Z243+Z244+Z245

First class passenger revenue
First class passenger-miles

Coach passenger revenue

Coach passenger-miles

Mail transportation revenue
Mail ton-miles

3906.1
K246

3906.2

K247

3907.1
V140

3907.2
V246+V247

Express cargo revenue
Express cargo ton-miles

Air freight revenue
Air freight ton-miles

Charter passenger revenue
Charter passenger-miles

Charter cargo revenue
Charter cargo ton-miles

A-8



Airline Production Data Description

Three different price and quantity index pairs are generated. The first is total

revenue-output and uses the multilateral Tomqvist-Theil index number procedure

on all of the revenue-output categories. The second uses the Tornqvist-Theil in-

dex number procedure on the two passenger categories. The third results from the

use of the index number procedure on mail, cargo, and charter services.

The capacity of flight operations is also provided in our data set. This describes

the total amount of traffic generated, regardless of whether or not it was sold.

While it is possible to distinguish between an unsold coach seat and an unsold

first-class seat (they are of different sizes), such distinctions are not logically pos-

sible in the case of cargo operations (mail and cargo could be carried in the same

location). Consequently, our measure of airline capacity includes only three broad

categories: first-class seat-miles flown, coach seat-miles flown, and nonscheduled
ton-miles flown. The accounts and schedules from Form 41 are shown in Ta-

ble A-7.

Table A-7. Capacity Measures

Schedule Accounts Type of service

T1 K321 First-class seat-miles

T1 K322 Coach seat-miles

T1 Z280 - (K321+K322)/10 Nonscheduled ton-miles

With the change to T100 as the primary data base for airline traffic in 1990, carri-

ers are no longer required to report available seat-miles, revenue seat-miles, or

revenues by the level of passenger service. Instead, these amounts are aggregated

with revenues supplied as account 3901 on Schedule P1 after 1990.

Again, the convention that a passenger along with baggage is 200 pounds (one-

tenth of a ton) is used to construct the nonscheduled ton-miles. Potential revenues

that could be collected, if all services were sold, are constructed assuming that the

prices for each of these categories remain the same as for output actually sold. In

other words, the price for first-class revenue passenger-miles flown is imputed to

first-class available seat-miles flown. Again, the Tomqvist-Theil index number

procedure is used to generate price and quantity pairs for total capacity output,

passenger capacity output, and nonscheduled capacity output.

Two important measures of the carder' s network are also generated. The first is a

passenger load factor. This is found by dividing revenue passenger-miles by

A-9



available seat-miles (i.e., [K141+K142]/[K321+K322]). This measure is gener-

ally related to flight frequency with a lower number indicating more frequent

flights and consequently a higher level of service. Other definitions of load factor

are possible, such as dividing the total passenger revenue collected

(3901.1+3901.2) by the total that would be collected were the planes flown full

(derived from the passenger capacity output times passenger capacity price). If

desired, these can easily be constructed using information in the data set. Stage

length also provides an important measure of cartier output. Generally, the

shorter the flight, the higher the proportion of ground services required per pas-

senger-mile and the more circuitous the flight (a higher proportion of aircraft

miles flown is needed to accommodate the needs of air traffic control). This gen-

erally results in a higher cost per mile for short frights than for longer flights. Av-

erage stage length is found by dividing total revenue aircraft miles flown (Z410)

by total revenue aircraft departures (Z510).
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Appendix B

Converting Technical Impacts into Economic Effects

The basic Air Carder Investment Model uses a supply function that incorporates

four factors of production: labor, energy, materials, and capital. To translate the

likely effects of NASA-developed technologies (which are usually thought of in

terms of reduced block times, less fuel burned, lower maintenance costs, etc.) into

appropriate reductions in the costs of these four factors of production, we had to

create a matrix of functional cost categories versus factors of production.

Because we were interested in fully accounting for airline operating costs, we used

Department of Transportation Schedule P-6 (Operating Expenses by Objective

Groupings). This report is only filed by Group II and III air carriers. See Ta-
ble B-1 for the elements of the various lines of this schedule.

Table B-1. Lines of Schedule P-6

Line number Elements

3

4

5

6

7

10

11

12

16

17

18

19

22

23

24

25

26

27

28

30

31

32

33

34

35

Salaries and wages of general management personnel

Salaries and wages of flight personnel

Salaries and wages of maintenance personnel

Salaries and wages of aircraft and traffic-handling personnel

Salaries and wages of other airline personnel

Personnel expenses

Employee benefits and pensions

Payroll taxes

Aircraft fuel and oil (including fuel and oil taxes)

Maintenance materials

Passenger food

Other materials

Advertising and other promotion

Communications

Insurance

Outside flight equipment maintenance

Passenger traffic commissions

Cargo traffic commissions

Other services

Landing fees

Rentals

Depreciation

Amortization

Other

Transport-related expenses
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While using Schedule P-6 creates some loss of precision because of aggregation,

it has the virtue of full visibility of all reported costs. The scheme we used to al-

locate the various lines of Schedule P-6 to the appropriate cells is shown in Ta-
ble B-2.

Table B-2. Derivation of Matrix (Reference Lines From Schedule P-6)

Category Labor Energy

Flight personnel 4* --

Aircraft fuel 16

Maintenance 5* --

Other variable operating costs 6* --

Fixed operating costs (3+7)* --

Flight equipment

Other capital

* = plus an allocated share of lines 10, 11, and 12.

Materials Capital

17+25

18+26+27+30

19+22+23+24+28+
34+35

-- 13.6% times flight
equipment

13.6% times
ground property
and equipment

We collected Schedule P-6 data for 10 years (1980, 1982, 1983, 1985, 1987,

1988, 1990, 1992, 1993, and 1995) for 12 carriers (American, Braniff, Continen-

tal, Delta, Eastern, Northwest, Ozark, Piedmont, Republic, Trans World, United,

and USAir). The choice of years and airlines were made to be as consistent as

possible with the econometric study of airline costs performed by Sickles and

Good (described in the main bodyof the report).

The two cells labeled "flight equipment" and "other capital" deserve separate ex-

planation. We generated a time series for the estimated economic value of a car-

tier' s aircraft fleet as follows. A key driver was the number of aircraft days. We

divided this figure by 365.25 to derive the average number of aircraft in a carrier's

fleet for the year. This estimate therefore includes both owned and leased aircraft.

If the average number of aircraft increased from one year to the next, the differ-

ence was multiplied by the industry-wide average cost of new aircraft shipped in

that year. This figure represented the value of new aircraft in a carrier's fleet.

The value of old aircraft in a carder's fleet was depreciated by 3.33 percent per

year (which implicitly assumes an economically useful lifetime of 30 years). For

years in which the average number of aircraft decreased from one year to the next,

the depreciated value of the old aircraft was scaled by the ratio of the latest year' s

number of aircraft compared with the prior year' s number to account for retire-

ments. The time series for the value of ground property and equipment was pulled
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Converting Technical Impacts into Economic Effects

directly from Form 41 balance sheet data (element 1649.0 without any accumu-

lated depreciation).

In any given year, the economic value of aircraft was multiplied by the sum of air

carriers' weighted average cost of capital (separately estimated at 10.3 percent)

plus depreciation of 3.3 percent to estimate the return to flight equipment capital.

Similarly, the value of ground property and equipment was also multiplied by 13.6

percent to estimate the return to other capital. Because we used this procedure to

separately estimate the cost of airline capital, no use was made of lines 31 to 33 of

the P-6 Schedule.

For the 10 years and 12 carriers, we collected the Schedule P-06 cost data and es-

timated the returns to capital as described above. The average cost shares are as

shown in Table B-3. In comparing our shares with those implicit in the ASAC

Air Cartier Investment Model, there is a high degree of agreement.

Table B-3. Mean Cost Shares

Labor Energy
Category (%) (%)

Flight personnel 13.8 --
Aircraft fuel -- 18.4

Maintenance 4.1 --

Other variable operating costs 11.6 --

Fixed operating costs 5.8 --

Flight equipment -- --

Other capital -- --

Totals 35.3 18.4

From supply variable estimates 37.6 20.6

Materials Capital
(%) (%)

4.2

13.9

13.4

-- 12.7

2.0

33.5 12.7

29.7 12.1

Totals
(%)

13.8

18.4

8.3

25.6

19.3

12.7

2.0

100.0

100.0

As shown in Table B-4, there was some variability in these cost shares. Energy

was particularly volatile, declining from a high share of 28.9 percent in 1980 to a

low share of 11.6 percent in 1995. The materials subcategory of other variable

operating costs had its low share of 9.5 percent in 1980 and its high share of

17.8 percent in 1993.
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Table B-4. Standard Deviations of Cost Shares

Category

Flight personnel
Aircraft fuel

Maintenance

Other variable operating costs

Fixed operating costs

Flight equipment

Other capital

Totals

Labor
(%)

0.8

0.2

0.8

0.3

1.4

Energy Materials Capital Totals
(%) (%) (%) (%)

6.1 m

0.8

2.7

1.9

1.7

0.2

6.1 5.1 1.7 0.0

0.8

6.1

0.8

2.1

1.8

1.7

0.2
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Appendix C

Derivation of the Air Carrier Investment
Model Extensions
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The goal of the ACIM Extensions is to translate the high-level estimates from the

basic ACIM into a finer level of detail. This appendix gives a detailed explana-
tion of how this is done.

INPUT STRUCTURE

There are four sets of input streams needed to run the ACIM Extensions. They are

1. a subset of the output stream from the basic ACIM;

2. an aircraft inventory database that describes the 1995 fleet;

3. a matrix of market shares that was estimated from historic aircraft sales data;

and

4. a set of user-defined inputs that describe/specify a scenario.

Each of the four sets of inputs are described in a section below.

INPUT #1, ASAC OUTPUT STREAM

The basic ACIM generates supply and demand estimates in the form of time-

series for revenue passenger miles, airline employment, number of aircraft in the

fleet, and operating profit margins. A sample of the aircraft fleet time-series is
shown in Table C. 1.

C-1



Table C-1. Aircraft Fleet Time-Series

Year Baseline number of aircraft

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

4,179

4,279

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,587

5,727

5,872

6,021

6,175

6,329

6,488

6,652

6,821

6,995

The time-series of number of aircraft in the fleet of the U.S. scheduled passenger

carriers can be used to estimate the number of new aircraft purchased in any year

to meet RPM growth; this is given by

aircraft purchased to meet RPM growtht = aircraft in fleett - aircraft in fleett_b

INPUT #2, AIRCRAFT INVENTORY

The DOT Schedule B-43 Airframe Inventory for 1995 was used to estimate the

initial distribution of aircraft by seat-size category and the expected retirement
schedule of the fleet. The first 15 lines of B-43 data for American Airlines are

shown in Table C.2. LMI added noise stage data to the aircraft inventory data-
base.
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Owned/

lease/capital Carrier

lease code

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

CL AA

Table C-2. Extract from B-43 Data

A/C

manufacturer A/C type

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-727-2

BOE B-757

BOE B-757

Number of

Year of A/C type se_s as

Tail first Serial numeric specified

number delive_ number code bycarrier

N701AA 81 22459 715 150

N702AA 81 22460 715 150

N703AA 81 22461 715 150

N705AA 81 22462 715 150

N890AA 80 22006 715 150

N891AA 80 22007 715 150

N892AA 80 22008 715 150

N893AA 80 22009 715 150

N894AA 80 22010 715 150

N895AA 80 22011 715 150

N896AA 80 22012 715 150

N897AA 80 22013 715 150

N898AA 80 22014 715 150

N899AA 80 22015 715 150

N634AA 90 24592 622 194

N635AA 90 24593 622 194

INPUT #3, MARKET SHARE DATA

The estimation of market shares begins with historic jet airplane deliveries to U.S.

customers. This set of data contains the name of the manufacturer and type of

every jet delivered to U.S. customers from 1966 to 1995. The data first are split

into the eight seat-size categories. For each category, a regression is run to predict

the market share by firm. The finn-level market shares are then summed to pro-

duce market shares by manufacturing country. Then, a set of category-by-

category corrections are made. In the largest seat class (>350 seats) and the 171 to

240 seat class, only U.S.-based manufacturers have delivered these types of jets to

U.S. customers. Airbus has delivered similar size jets to non-U.S, customers and

it also has undelivered orders to U.S. customers. To correct the regression results

for these two categories, it is assumed that manufacturers take 10 years to attain a

first sale in a new market. After that, the firm gets an exponential growth rate

based on capturing 12 percent of the market after another 10 years. The regres-

sion results for the other seat-size categories were corrected by using an exponen-

tial smoothing algorithm that incorporates a time- and number-weighted moving

average of the previous 10 years' sales. This correction generates future market

share estimates that consistently lie between exponentially smoothed, continuous,

and bounded long-run market share estimates.
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INPUT #4, USER-DEFINED INPUTS

The last set of inputs are user-defined variables that enable analysts to further de-

fine or refine a scenario, perform sensitivity analysis over a small subset of vari-

ables, or perform simple what-if types of analyses. The variables are initially set

to a baseline value, but users may enter alternative values. The user-defined in-

puts are easily classified into one of the following categories:

• Retirement age data

• Aircraft cost data

• Interest rate data

• Other data.

The retirement age data specify the ages at which aircraft are nominally retired.

Retirement age rules vary in two dimensions: the year in which the retirement

rules are changed and narrow-body versus wide-body aircraft.

The baseline aircraft cost figures were derived from the Boeing 1995 Current

Market Outlook. These data specify the acquisition costs of new aircraft by seat-

size category.

The interest rate data specify the real interest rate in terms of its two components,

the nominal interest rate (or airline cost of capital) and the rate of price increase.

The actual values of both components are subject to debate and a variety of values

can be used and justified. Therefore, it is advisable to determine the sensitivity of

any solution to these parameters.

The other data represent a set of varied single inputs. The year of noise law en-

forcement enables users to explicitly examine the effects of changing the year in

which Stage 2 aircraft may no longer operate in the United States. The figure for

aircraft shipments per airframe manufacturing worker allows for varying these

workers' productivity. The user-defined inputs are shown in Table C-3.

C-4



Derivation of the A CIM Extensions

Table C-3. User-Defined Inputs

Data description Baseline value

Entry in service year for incorporation of newer retirement rules for
passenger aircraft

Average age at which narrow body aircraft are retired prior to
incorporation of new rules

Average age at which narrow body aircraft are retired after
incorporation of new rules

Average age at which wide body aircraft are retired prior to
incorporation of new rules

Average age at which wide body aircraft are retired after
incorporation of new rules

Acquisition cost of a new aircraft by number of seats:

>350

241-350

171-240

121-170

91-120

70-90

50-69

Under 50

Nominal interest rate or airline cost of capital

Nominal rate of price increase

Year by which 100 percent of the fleet must be Stage 3

Aircraft shipments per airframe manufacturing worker

198O

25

28

28

31

$160,000,000

$116,700,000

$58,000,000

$44,000,000

$28,000,000

$22,000,000

$19,400,000

$14,800,000

10.3%

3.0%

2000

$122,700

STATIC ANALYSIS

The static analysis performs the replacement analysis of the current fleet. Starting

with the aircraft inventory database, an expected retirement year is assigned to

each aircraft by the user-defined age rules. The number of aircraft retired per year

is found by summing all the retirements that are expected to occur in a particular

year. This represents the minimal replacement schedule (new aircraft added to

replace those retiring due to old age).

The first retirement schedule estimated is for Stage 3 passenger aircraft. The sec-

ond retirement schedule estimated is for Stage 2 passenger aircraft. Stage 2 pas-

senger aircraft are further analyzed with respect to noise regulations. The Stage 3

noise law forces all Stage 2 aircraft from the fleet by its year of implementation.

A break-even calculation is performed to determine which of the Stage 2 planes
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subject to early retirement should be hushkitted and which should be immediately

replaced. The Stage 2 passenger aircraft retirement schedule is then modified to
include this effect.

These two retirement schedules are combined to generate the baseline retirement

schedule for the fleet. Our assumption is that aircraft retired due to old age are

replaced with Stage 3 aircraft of the same seat-size category. For each year, the

baseline retirement schedule of the fleet is multiplied by the acquisition cost of a

new passenger aircraft of that seat size.

Since this analysis is based on the 1995 year-end inventory, it will only need to be

redone if the following inputs are changed:

• Retirement ages or rules

• Year of the noise law incorporation

• Acquisition cost of an aircraft by seat size

• Either of the two components of the real interest rate.

DYNAMIC ANALYSIS

The dynamic analysis allocates the aircraft purchased to meet future RPM growth

over the eight seat-size categories by the following method. We first take the

time-series of the number of planes in the fleet from the basic ACIM and calculate

the yearly differences of this time series. These differences are the aircraft added

to meet RPM growth.

We use the growth rate in seats per aircraft from the user inputs to create a time

series starting with the average seats figure estimated from the aircraft inventory
database.

We estimate the average-seats figure for the new aircraft by the following for-
mula:

(Average seats per aircraftt * Total aircraftt - (Average seats per aircraftt_l * Total

aircraftt_l * (1+ growth rate in the stage length))/Aircraft addedt

Fifty percent of the aircraft added to meet RPM growth are allocated to the seat-

size category in which the average-seats figure falls. The remaining aircraft added

to meet RPM growth are distributed across all eight seat-size categories according
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to the 1995distributionschedule.Theresultingcompositionof thefleet is tracked
at theseat-sizecategorylevel, yearby year.

NEW AIRCRAFT SUMMARY

Once both the number and costs of the replacement passenger aircraft and the new

growth passenger aircraft are known, they are summed to produce the total num-

ber of Stage 3 aircraft added to the fleet and its corresponding market value.

U.S. SALES TO U.S. AIR CARRIERS

The U.S. sales calculation is an estimate of the portion of new aircraft sales that

accrue to U.S. airframe manufacturers. For each year, the total market value of

the Stage 3 aircraft by seat-size category is multiplied by the corresponding U.S.

market share. When summed over a year, this gives the sales of U.S.-

manufactured aircraft to U.S. passenger air carriers in a particular year.

U.S. MANUFACTURING EMPLOYMENT

The additional U.S. airframe manufacturing employment resulting from the sales

of new Stage 3 aircraft is estimated in the summary section. The average sales per

worker is a user input. Work years of employment generated are found by divid-

ing the U.S. sales in each seat-size category by the average sales per airframe

manufacturing worker, summed across all seat classes.

SUMMARY CALCULATIONS

The summary calculations present the key data in terms of differences between the

baseline scenario and the user-defined scenario, which is usually characterized as

the introduction of a new technology. The relevant data are the differences across
the baseline and user-defined scenarios for

• the number, by seat-size category, of Stage 3 aircraft purchased;

• the total market value of Stage 3 aircraft purchased;

• the U.S. share of Stage 3 aircraft purchased;

• the market value of the U.S.-manufactured Stage 3 aircraft; and
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• theairframemanufacturingemploymentarisingfrom theU.S.-
manufacturedStage3.
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DEFAULT VALUES

Table D-I shows the default values for the annual changes (from 1995 through

2015) of the key variables in the ASAC Air Carrier Investment Model.

Table D-1. Default Values

Federal Aviation

Variable Boeing a (%) Administration b (%) LMI (%)

Change in fare yield

Income growth

Population growth

Change in unemployment rate

Laborprice change

Laborproductivity effect

Fuelcostchange

Materials cost change

Capital price change

Capital productivity effect

Change in stage length

Change in load factor

Change in average seats per aircraft

Change in average age of aircraft

Change in proportion of jet aircraft

Change in proportion of wide-bodied
aircraft

-1.10

2.40

0.00

1.60

-1.60

(reflects 0.9% in-

crease in fuel price
minus 2.5% increase

in fuel efficiency)

0.00

0.40

(reflects more miles

flown per year per
aircraft)

0.30

0.60

-1.18

2.62

m

0.00

0.52

(reflects more ai_
borne houB peryear

peraimraft)

0.38

0.10

0.80

0.002275

-1.07

2.51

0.94

0.00

0.00

1.60

-1.60

0.00

0.00

0.46

0.38

0.20

0.70

0.74

0.00

0.002275

Note: All economic values are measured in constant dollars. Therefore, the annual percenta
real rates of change.

aThe Boeing figures are an amalgamation of forecasts from the 1993 through 1996 editions of the Current
Market Outlook. If forecasts from multiple years were available, preference was given to the latest edition.
Additionally, preference was given to U.S.-specific forecasts; otherwise, worldwide forecasts were substituted.

b-l-he FAA figures were derived from FAA Aviation Forecasts: 1996-2007. The FAA focuses exclusively on
U.S. carriers.

e changes are
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FORECASTED VALUES

When the consensus figures are inserted into the ASAC Air Carrier Investment

Model, the values of future travel and aircraft requirements, shown in Table D-2,

are predicted for the period 1995 through 2005. These forecasts may be compared

with those from Boeing and the FAA.

Table D-2. Forecasted Values

Variable Boeing a FAA b LMI

Revenue passenger-mile (RPM) growth

Absolute RPMs (billions) in 2005

Growth in number of aircraft

Absolute number of aircraft in 2005 c

4.74%

888.5

3.20%

5,332

4.36%

834.1

3.05%

5,537

4.50%

855.6

2.69%

5,451

Note: The Boeing, FAA, and LIM figures for number of aircraft in the 1995 fleet were 3,890; 4,100; and
4,179 respectively.

aThe Boeing figures are an amalgamation of forecasts from the 1993 through 1996 editions of the Cur-
rent Market Outlook. If forecasts from multiple years were available, preference was given to the latest
edition. Additionally, preference was given to U.S.-specific forecasts; otherwise, worldwide forecasts were
substituted.

bThe FAA figures were derived from FAA Aviation Forecasts: 1996-2007. The FAA focuses exclusively
on U.S. carriers.

CCargo aircraft are excluded.

Table D-3 shows the projected distribution of aircraft in 2005 by seat size cate-

gory.

Table D-3. Projected Distribution of Aircraft by Seat Size in 2005

Seat size Under 50

Number of 612
aircraft

50-69 70-90 91-120

115 97 846

121-170 171-240 241-350 Over350

2,484 349 138810

Total

5,451
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Appendix E

Details of Alternative Scenarios

TECHNOLOGY A

Technology A is hypothesized to reduce the weight of key components of the air-

frame. As a consequence, block fuel is reduced for the average flight by five per-

cent. Assuming a penetration rate of 69.3 percent by the year 2015, this

improvement is modeled as a 0.35 percent compound annual reduction in fuel

costs during the period 2006 to 2015. When the target operating margin con-

straints are binding at five percent, the reduced airline operating costs are passed

along to the traveling public as fare reductions. Consequently, an additional

34.1 billion revenue passenger miles are flown, airline employment increases by

nearly 24,000 work-years, and the number of aircraft in the fleet increases by 37.

The estimated total value of these aircraft is $1.9 billion (in 1995 dollars) and the

U.S. market share is projected at 76 percent. This is expected to generate

11,968 work-years of employment at U.S. airframe manufacturers.
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Table E-1. RPM Growth for Technology A

Baseline Total RPM Revised Total RPM

Year (billions) (billions)

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

891.7

929.2

968.4

1,009.2

1,051.7

1,095.2

1,140.5

1,187.6

1,236.7

1,287.8

4.34%

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

892.2

930.3

970.0

1,011.5

1,054.7

1,098.8

1,144.8

1,192.7

1,242.6

1,294.6

4.37%

34.1
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Details of Alternative Scenarios

Table E-2. Airline Employment for Technology A

Baseline Revised

Year Employment Employment

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

645,810

667,787

690,626

714,365

739,041

764,055

790,041

817,042

845,101

874,262

3.50%

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

646,173

668,539

691,794

715,975

741,124

766,580

793,036

820,537

849,126

878,852

3.53%

23,608
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Table E-3. Fleet Size for Technology A

Baseline Number Revised Number

Year of Aircraft of Aircraft

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,587

5,727

5,872

6,021

6,175

6,329

6,488

6,652

6,821

6,995

2.61%

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,590

5,734

5,882

6,035

6,193

6,350

6,513

6,680

6,853

7,032

2.64%

37
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Details of Alternative Scenarios

TECHNOLOGY B

Technology B is hypothesized as an improvement in jet propulsion technology.

As a consequence, block fuel is reduced for the average flight by 14 percent, but

the price of the airframe/engine combination increases by 2 percent. Assuming a

penetration rate of 69.3 percent by the year 2015, these changes are modeled as a

1.02 percent compound annual reduction in fuel costs and a 0.14 percent com-

pound annual increase in capital price during the period 2006 to 2015. When the

target operating margin constraints are binding at 5 percent, the reduced airline

operating costs are passed along to the traveling public as fare reductions. Conse-

quently, an additional 86.8 billion revenue passenger miles are flown, airline em-

ployment increases by over 60,000 work-years, and the number of aircraft in the

fleet increases by 93. The estimated total value of these aircraft is $4.9 billion (in

1995 dollars) and the U.S. market share is projected at 76 percent. This is ex-

pected to generate 30,231 work-years of employment at U.S. airframe manufac-

turers.
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Table E-4. RPM Growth for Technology B

Baseline Total RPM Revised Total RPM

Year (billions) (billions)

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

891.7

929.2

968.4

1,009.2

1,051.7

1,095.2

1,140.5

1,187.6

1,236.7

1,287.8

4.34%

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

893.0

931.9

972.6

1,015.1

1,059.4

1,104.5

1,151.5

1,200.5

1,251.6

1,304.9

4.41%

86.8
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Details of Alternative Scenarios

Table E-5. Airline Employment for Technology B

Baseline Revised

Year Employment Employment

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

645,810

667,787

690,626

714,365

739,041

764,055

790,041

817,042

845,101

874,262

3.50%

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

646,745

669,722

693,630

718,510

744,405

770,515

797,668

825,909

855,286

885,850

3.57%

60,109

E-7



Table E-6. Fleet Size for Technology B

Baseline Number Revised Number

Year of Aircraft of Aircraft

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,587

5,727

5,872

6,021

6,175

6,329

6,488

6,652

6,821

6,995

2.61%

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,595

5,744

5,898

6,056

6,220

6,383

6,551

6,724

6,903

7,088

2.68%

93
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Details of Alternative Scenarios

TECHNOLOGY C

Technology C is hypothesized to reduce the block time for the average flight by

4 percent. Assuming a penetration rate of 69.3 percent by the year 2015, this im-

provement is modeled as 0.14 percent, 0.28 percent, and 0.03 percent compound

annual reductions in labor, fuel, and materials costs, respectively, during the pe-

riod 2006 to 2015. Additionally, the compound annual improvement in capital

productivity is 0.27 percent. When the target operating margin constraints are

binding at 5 percent, the reduced airline operating costs are passed along to the

traveling public as fare reductions. Consequently, an additional 83.8 billion reve-

nue passenger miles are flown. However, because of the productivity improve-

ments, airline employment decreases by over 4,000 work-years and the number of

aircraft in the fleet decreases by 100. The estimated value of these is a drop of

$5.2 billion (in 1995 dollars) from the baseline scenario. The projected U.S. mar-

ket share remains at 76 percent. This is expected to cost 32,408 work-years of

employment at U.S. airframe manufacturers.
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Table E-7. RPM Growth for Technology C

Baseline Total RPM Revised Total RPM

Year (billions) (billions)

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

891.7

929.2

968.4

1,009.2

1,051.7

1,095.2

1,140.5

1,187.6

1,236.7

1,287.8

4.34%

550.7

576.6

603.8

632.3

662.1

693.3

723.1

754.1

786.6

820.4

855.6

892.9

931.8

972.3

1,014.7

1,058.8

1,104.0

1,151.1

1,200.2

1,251.4

1,304.8

4.41%

83.8
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Details of Alternative Scenarios

Table E-8. Airline Employment for Technology C

Baseline Revised

Year Employment Employment

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

645,810

667,787

690,626

714,365

739,041

764,055

790,041

817,042

845,101

874,262

3.50%

438,983

455,299

472,316

490,068

508,590

527,917

545,799

564,383

583,700

603,780

624,659

645,761

667,686

690,470

714,148

738,761

763,648

789,499

816,355

844,259

873,257

3.50%

-4,285
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Table E-9. Fleet Size for Technology C

Baseline Number Revised Number

Year of Aircraft of Aircraft

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Growth Rate

Gross Change

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,587

5,727

5,872

6,021

6,175

6,329

6,488

6,652

6,821

6,995

2.61%

4,179

4,297

4,419

4,545

4,676

4,812

4,932

5,055

5,183

5,315

5,451

5,579

5,711

5,847

5,988

6,132

6,276

6,424

6,576

6,733

6,895

2.54%

-100
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Appendix F

User's Guide

STARTING ACIM

The file name for the model is ACIM.xls. To run the model:

• Download ACIM.xls from the ASAC website.

• Make sure that Microsoft Excel is NOT running.

• Locate ACIM.xls in File Manager, Windows Explorer, or a similar utility.

• Double click on the file name or file icon.

The main dialog box of the ACIM will appear. This dialog box has four buttons,

that will be explained in tum.

RUN MODEL

Clicking the Run Model button displays the Run Model dialog box, which has

five buttons that will be described below.

Choose Scenario

Clicking the Choose Scenario button displays the Choose Scenario dialog box.

This dialog box contains a drop down list of scenarios of the available scenarios.
The user can select a scenario from this list and then return to the Run Model

dialog box by clicking on the Return to Run Model button.

Edit Scenario

Clicking the Edit Scenario button displays the Edit Scenario dialog box. This

dialog box contains eight buttons. The first 5 buttons display dialog boxes where

the user can view and edit the scenario parameters of the chosen scenario. The

sixth button displays a dialog box where the user can enter or edit notes about the
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scenario. The seventh button displays the Edit Aircraft Replacement Parameters

dialog box. The eighth button returns the user to the Run Model dialog box.

TRANSLATOR UTILITY

The first dialog box accessed from the Edit Scenario dialog box is the Edit Gross

Changes in Cost dialog box. There is a button on this box marked Translator.

Clicking this button displays the Translator dialog box, which has four buttons.

This dialog box is used to select a baseline case file and a revised case file which

have been downloaded previously to the user's system. Use the first button to
choose the baseline case file and the second button to choose the revised case file.

Use the Update Gross Changes in Cost button to calculate changes for Flight Per-

sonnel, Aircraft Fuel, and Maintenance from the selected files and display the new

figures in the Edit Gross Changes in Cost dialog box. Use the cancel button to

retum to the Edit Gross Changes in Cost dialog box without making any changes

from the Translator Utility.

EDIT AIRCRAFT REPLACEMENT PARAMETERS

Clicking the Edit Aircraft Replacement Parameters button displays the Edit Air-

craft Replacement Parameters dialog box. This dialog box has five buttons. The

first four buttons display dialog boxes where the user can view and edit additional

parameters for the chosen scenario. These parameters affect when and with what

types of equipment various aircraft will be replaced. The fifth button returns the

user to the Edit Scenario dialog box.

Save or Delete Scenario

Clicking the Save or Delete Scenario button displays the Save or Delete Scenario

dialog box. This dialog box has a drop down list from which the user can select a

scenario name. The user can delete a selected scenario by clicking the Delete

Scenario button after selecting a scenario. The user can save new edits to an old

name by selecting the name and clicking the Save Current Scenario button. The

user can save to a new name by typing a name into the edit box or editing a name

that appears in the edit box after selecting it from the list and then clicking on the

Save Current Scenario button. The only exception to this is that the baseline case

and the three technology cases that come with the model cannot be deleted or

modified under their old names. Clicking the Return to Run Model Dialog Box

button displays the Run Model dialog box without saving or deleting a scenario.

F-2



User's Guide

Solve Scenario

Clicking the Solve Scenario button displays the Solve Scenario dialog box. This

dialog box has three buttons. The first solves the scenario given the target oper-

ating margins specified by the user and calculates fare yields. The second solves

the scenario given the fare yields specified by the user and calculates operating

profit margins. The third returns the user to the Run Model dialog box without

solving the model.

Return to Main Dialog Box

Clicking the Return to Main Dialog Box button returns the user to the Main dialog

box, which is the first dialog box to appear when starting the model.

VIEW, PRINT, OR SAVE RESULTS

Clicking the View, Print, or Save Results button displays the View, Print, or Save

Results dialog box. This dialog box has four buttons.

View Results

Clicking the View Results button displays the View Results dialog box. This

dialog box contains a drop down list of the results pages that may be viewed. The

user selects one and then clicks the OK button to view it. The result page will be

displayed until the user double clicks somewhere on the result screen. At that

point, the View, Print, or Save Results dialog box will be displayed.

Print Results

Clicking the Print Results button displays the Print Results dialog box. This dia-

log box contains a drop down list of the results pages that may be printed. The

user selects one and then clicks the OK button to print it. The result will be

printed on the default printer and the View, Print, or Save Results dialog box will

be displayed.

Save Results to File

Clicking the Save Results to File button displays the Save Results dialog box.

This dialog box allows the user to select a location and file name under which all

results will be saved. This file can then be accessed later by the user. Upon
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leavingthis dialog box, theView, Print, or SaveResultsdialog boxwill bedis-
played.

Return to Main Dialog Box

Clicking the Return to Main Dialog Box button displays the Main dialog box.

VIEW OR PRINT DATA OR SCENARIO

Clicking the View or Print Data or Scenario button displays the View or Print

Data or Scenario dialog box. This dialog box has three buttons.

View or Print Data

Clicking the View or Print Data button displays the View or Print Data dialog

box. This dialog box contains a drop down list of the data elements that can be

viewed or printed. The user selects one from the list and then views or prints it by

clicking the appropriate button.

View or Print Scenario

Clicking the View or Print Scenario button displays the View or Print Scenario

dialog box. This dialog box contains a drop down list of the scenarios that can be

viewed or printed. The user selects one from the list and then views or prints it by

clicking the appropriate button.

Return to Main Dialog Box

Clicking the Return to Main Dialog Box button displays the Main dialog box.

EXIT MODEL

Clicking the Exit Model button exits the ACIM.

GENERAL INSTRUCTIONS

The most common set of actions when running the model is as follows:

choose a scenario,
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User's Guide

• edit the scenario parameters as desired,

• save the scenario,

• solve the scenario, and

• view the results.
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